
Ab initio study of magnetic effects on diffusion in α-Fe

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys.: Condens. Matter 16 7033

(http://iopscience.iop.org/0953-8984/16/39/036)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 27/05/2010 at 18:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/16/39
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 7033–7043 PII: S0953-8984(04)78203-X

Ab initio study of magnetic effects on diffusion in α-Fe
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Abstract
A deviation from the Arrhenius law in α-Fe self-diffusion and also in the
diffusion of substitutional impurities is found experimentally. Below the
Curie temperature the diffusion coefficients have lower values than those
extrapolated from the paramagnetic region and the Arrhenius plot shows an
upward curvature.

In this work we attempt to understand this behaviour from first-principles
calculations. Formation and migration energies for self-diffusion and also for
the diffusion of some substitutional impurities are calculated. Spin-polarized
and non-spin-polarized calculations are assumed to approximately represent
ferromagnetic and paramagnetic α-Fe respectively.

The calculations were performed using the WIEN97 code, with a supercell
of 36 atoms which allows us to include both vacancies and impurities and
therefore to study the migration along the 〈111〉 direction. The increment in
the diffusion barrier due to the total magnetic alignment at 0 K, with respect to
the paramagnetic case, is almost constant for non-magnetic impurities, as it is
in the experiments, whereas for magnetic impurities it depends on the diffusing
atom.

1. Introduction

The effect of magnetism on self-diffusion and vacancy mediated impurity diffusion in iron is
an interesting field of research for both academic reasons and for its applications [1]. We shall
be concerned in this paper with differences between magnetic and non-magnetic impurities.
Some non-magnetic impurities such as Sn and Sb have been studied in our laboratory and
results for magnetic impurities such as Co and Cr have been taken from the literature. All
these elements are known to be substitutional diffusers.
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(a) (b)

Figure 1. The supercell used in the calculations, showing the number of Fe atoms that separate
the impurities when periodicity is imposed: (a) a substitutional impurity next to a vacancy; (b) an
impurity at a saddle point.

The experimental results show in all cases a break in the Arrhenius plot at the Curie
temperature and a soft upward curvature at lower temperatures. This curvature originates from
an increment of the activation energy in the ferromagnetic state, which depends on temperature
as the square of the spontaneous magnetization. We have observed that this increment is
almost constant for the non-magnetic impurities and has different values for each magnetic
impurity. The main point of this work is to find out whether this behaviour is also obtained
when calculating migration and formation energies theoretically by ab initio methods. In the
literature a simple Ising-type model is used to fit the experimental results [2], and we will also
attempt to obtain the fitting parameters from these calculations.

The energy differences to be calculated are very small, but they can be obtained using
ab initio methods, within the milliRydberg limit. Previous calculations [3, 4] were performed
using other techniques, that allow larger unit cells and also a relaxation of the structure. It is
interesting to compare those results with a more precise ab initio calculation, for an unrelaxed
structure but with a reasonably large unit cell. For this purpose we evaluate the formation and
migration energies of the vacancies close to substitutional impurities, using a periodic three-
dimensional system consisting of repeated supercells with 36 atoms, that is, a 3% concentration
of impurities and vacancies. A larger size of the unit cell in the 〈111〉 direction was chosen
to obtain a rather dilute alloy (see figure 1), which makes the calculated results close to the
experimental situation. Increasing the unit cell in the perpendicular direction would increase
the number of atoms in the cell beyond our computational possibilities.

We have performed ab initio calculations for the magnetic (spin-polarized) and
paramagnetic (non-spin-polarized) configurations, making the somewhat bold assumption that
their diffusion properties may be comparable to those below and above the Curie temperature
respectively.

2. Method of calculation

The electronic structure and total energies were obtained using the WIEN97 code [5] which
is an implementation of the linearized augmented plane wave (FP-LAPW) method based on
density functional theory. The local spin density approximation (LSDA) for exchange and
correlation, as improved by Perdew et al [6] for the GGA case, was used because it gives
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Figure 2. Calculated cohesive energy versus RKmax for pure bcc Fe.

the best results for the lattice parameter and cohesive energy of bcc Fe. Scalar-relativistic
effects were included in the calculation; the k-point sampling of the Brillouin zone (BZ) was
at 150 points. The atomic sphere (muffin-tin) radii were taken as 2 au for 3d metals and
2.2 au for 4d metals. The lattice parameter for bulk pure bcc iron was obtained by energy
minimization and this value (5.42 au) was used in the rest of the calculations.

A well known problem in this type of calculation is the number of plane waves required for
convergence, which determines the size of the matrices to be diagonalized. The adimensional
parameter RKmax, which controls the size of the plane wave basis sets in the WIEN97 code, is
defined as the product of the plane wave cut-off and the smallest atomic sphere radii (‘muffin-
tin’ radii). The total cell energy changes when RKmax increases, until it reaches a converged
value. We will show here an extrapolation procedure for the particular example of pure bcc
Fe calculated with one atom per unit cell and spin polarization, with 10 000 k-points. As we
can see in figure 2 the energy attains its converged value at RKmax around 10. The full curve
in that figure is an exponential fit to the calculated cohesive energy:

Eatom − Ebcc Fe = Ecohesive = A − Be−(k·RKmax) (1)

where A, B and k are constants. A represents the energy value for RKmax = ∞, that is, the
total cell energy if it were calculated with an infinite number of plane waves. Therefore, the
use of parameter A instead of the total energy calculated with any value of RKmax is a better
estimate of the total energy per unit cell of the system and also provides an estimate of the
calculation error. For this particular case we obtain AFERRO

Fe = (6.501 ± 0.003) eV for the
magnetic case and APARA

Fe = (5.917 ± 0.002) eV for the paramagnetic case, when the Fe atom
energy is that given by the same code.

If the cell size increases to 36 atoms, as in the rest of the present paper, RKmax = 10
is beyond our computational capacity, and the use of equation (1), fitting the energies from
calculations with RKmax between 7 and 8, could be very useful.

3. Analysis of existing experimental results

A number of experiments show that the relation between the logarithm of the diffusion
coefficient (D) and the reciprocal of the absolute temperature (the so-called Arrhenius plot),
which is normally linear for metals, deviates from linearity for ferromagnets.
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Figure 3. Arrhenius plots for Sn, Sb and self-diffusion in α-Fe. The curves are fits according to
equation (7).

In the particular case of α-Fe, self-diffusion measurements performed by several
authors [7, 1, 8] show a linear Arrhenius plot in the paramagnetic region but a break at
the Curie temperature (TC = 1043 K) and a soft upward curvature at lower temperatures
in the ferromagnetic region, these values being lower than the ones extrapolated from the high
temperature region. The same behaviour is observed in the diffusion of several solutes, when
they are studied in an extended temperature range, as shown in figure 3.

An interpretation of the magnetic ordering effect on diffusion is possible assuming a
vacancy mechanism for diffusion and also that the energy for vacancy formation and vacancy
migration at any given temperature depends on the degree of magnetic order (i.e. spontaneous
magnetization).

From the random walk theory, D for a vacancy mechanism is given by

D = f r2�vCv

6
(2)

where f is the correlation factor (for a vacancy mechanism, f is independent of temperature),
r is the jump distance, �v is the average jump frequency and Cv is the average vacancy
concentration. These last two temperature dependent quantities are related to the migration
and formation energy of vacancies, respectively. Ruch et al [2], extending early work by
Girifalco [9], describe the effects of ordering on diffusion,using the spontaneous magnetization
as the order parameter. The configurational energy in the case of a ferromagnet is taken as the
Hamiltonian of a system of ions each having a resultant spin Si so, considering only nearest
neighbour interactions,

Eex = −2J
∑

(i, j)

Si S j . (3)
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Table 1. Diffusion parameters as obtained from experimental measurements.

D0p (m2 s−1) Qp (eV) α αQp (eV)

Sn 6.0 × 10−6 1.9 ± 0.2 0.23 0.44 ± 0.04
Sb 1.3 × 10−5 2.1 ± 0.2 0.20 0.42 ± 0.04
Fe 2.7 × 10−4 2.5 ± 0.1 0.16 0.41 ± 0.05
Co — — 0.23 0.50 ± 0.05
Cr 4.0 × 10−3 2.8 ± 0.1 0.14 0.39 ± 0.04

Following a statistical mechanical treatment they finally arrive at

Cv = e−[E0
for+(z J/2)s2]/kT and �v = νeffe−Em/kT (4)

where z is the coordination number and s is the ratio of the spontaneous magnetization at
temperature T to that at 0 K (reduced magnetization) and has been experimentally determined
by Crangle and Goodman [10]. E0

for is the vacancy formation energy in a disordered crystal
and Em and νeff depend on the local atomic configurations. νeff is assumed to be independent of
temperature and Em is calculated as the static energy difference between the energy of an atom
in the activated position for a diffusive jump and that of an atom in the adjacent equilibrium
position. Em is of the form

Em = E0
m + Cs2 (5)

where C is a constant and E0
m is the migration energy for an atomic jump in a disordered

(paramagnetic) crystal. The activation energy for diffusion in a paramagnetic crystal, Qp, is
E0

for + E0
m. If α is defined as

α = C + 1
2 z J

Qp
(6)

and all the temperature independent constants are lumped into the pre-exponential factor D0,
the expression for the diffusion coefficient in a ferromagnet is given by

D(T ) = D0 exp[−Qp(1 + αs2)/RT ]. (7)

Note that α is an adimensional constant composed by two additive terms, one due to
the variation in the formation energy (αf = z J/2) and the other that in the migration energy
(αm = C) due to magnetic ordering, both in units of Qp; therefore equation (6) can also be
expressed as

α = αf + αm

Qp
. (6′)

This model was applied to the self-diffusion [7, 1], and to that of Co [11], Cr [12], Sn [13]
and Sb [14] in α-Fe, successfully. The parameters that fit equation (7) for each diffuser are
given in table 1. The experimental diffusion coefficients for non-magnetic diffusers are shown
in figure 3 together with the self-diffusion and with the model fitting. The percentage increment
in the activation energy between the totally unaligned spins (paramagnetic state) and the totally
aligned spins (ferromagnetic at 0 K), represented by the α parameter, varies from 14 to 25%.
The value of αQp seems to be around 0.4 eV for all these elements except Co.

As we can see in table 1 and figure 3, this model describes the experimental results
quite successfully. However, it is well known that a simple Ising model with only nearest
neighbour interactions is a poor approximation to the ferromagnetic systems and becomes
even worse if more neighbours are considered [15]. For example, the numerical value of αf
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Table 2. Calculated formation and migration energies for RKmax = 7.4.

Ferromagnetic Paramagnetic

Diffuser Efor (eV) Emig (eV) Efor (eV) Emig (eV) Qp αQp

Fe 2.57 0.80 1.55 0.44 1.99 1.38
Co 2.67 0.78 1.63 0.33 1.96 1.49
Cr 2.48 0.59 1.63 0.20 1.83 1.23
As 2.05 0.35 1.35 0.00 1.35 1.05
Sn 1.91 0.68 1.25 0.46 1.71 0.90
Sb 1.93 0.69 1.13 0.40 1.53 1.10

calculated theoretically for pure α-Fe by Ruch et al [2] is too low, 0.045 eV, compared with
the value estimated from positron annihilation experiments [16]. Therefore, first-principles
calculations are certainly necessary for a better understanding of the experimental results and
of the phenomenological models.

4. Present calculations

4.1. Formation and migration energies

Table 2 reports the vacancy formation energies (Efor) calculated according to the following
equation:

Efor = E34Fe+imp+vac + EFe − E35Fe+imp (8)

where the first term is the energy of the cell with vacancy and impurity neighbours along the
〈111〉 direction, the second term is the energy per atom of pure bcc Fe and the last one is for a
cell with only one substitutional impurity.

The migration energy (Emig) was calculated as the difference between the energy of a
system with the impurity in a substitutional site, with a vacancy as first neighbour (figure 1(a)),
and that with the impurity in the saddle point configuration (figure 1(b)). In a few cases we
made calculations for other positions for the impurity along the 〈111〉 path and found that the
saddle point was always the energy maximum. The energy barrier shows a flat region near the
maximum but never two maxima, as suggested by some empirical potential calculations [17].

The highest value of RKmax allowed by our computational facilities for all the cases
studied was 7.4, and it was clear that convergence in RKmax had not been achieved. However,
an interesting qualitative analysis could be performed. Magnetic solutions always have lower
total energy than the paramagnetic ones, as expected. Also, the activation energies Q, that are
the sums of the formation and migration energies, are lower in the paramagnetic case, as in the
experimental results. This sustains the interpretation made in section 3 that a lattice stiffening
due to the ferromagnetic order is the cause of the Arrhenius plot curvature.

αQp is almost the same for all the non-magnetic impurities, about 1 eV, while it is different
for each of the magnetic impurities. αQp is the difference between the diffusion activation
energy when all spins are aligned (at 0 K) and that of the paramagnetic situation. It is due to
the magnetic interaction of the diffuser with the neighbour Fe atoms but also to the interaction
among these. By looking at the spin densities inside the unit cell, one can understand why all
non-magnetic impurities give almost the same value. Figure 4 shows the spin densities on the
(110) plane for different impurities and it is clear that on this scale the magnetic impurities
and the vacancies are identical; non-magnetic impurities behave as magnetic vacancies, so the
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Figure 4. Spin densities on the [110] plane: (a) a perfect pure iron cell, (b) pure iron with a vacancy,
((c)–(f)) a lattice with the above-mentioned impurity in a substitutional position (Co, Cr, Sb and
Sn respectively).

increment in the diffusion barrier is only due to the interaction among the Fe atoms involved
in the diffusion jump.

For the impurities there are no positron annihilation data, only diffusion coefficients.
Therefore Efor and Emig cannot be obtained separately, but their sum, Qp, for the paramagnetic
region is given in table 1. The non-magnetic diffusers have a smaller Qp and this is also
obtained in the calculations. The measurement of As diffusion in α-Fe is still in progress in
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Table 3. Magnetic moments (in Bohr magnetons).

Impurity Fenn Interstitial Cell

Impurity in Fe supercell

Fe 2.30 2.30 −1.76 81.00
Co 1.80 2.43 −1.61 82.17
Cr −1.79 2.36 −1.78 78.65
As −0.05 2.29 −1.54 80.43
Sn −0.08 2.29 −1.63 79.86
Sb −0.07 2.23 −1.60 80.25

Impurity with a vacancy as next neighbour

Fe 2.44 2.44 −1.16 79.62
Co 1.81 2.45 −0.99 79.79
Cr −1.36 2.53 −1.36 76.57
As −0.06 2.46 −1.12 78.19
Sn −0.10 2.44 −1.01 77.52
Sb −0.07 2.47 −1.22 77.63

Impurity at a saddle point

Fe 2.39 2.45 −1.30 79.47
Co 1.82 2.48 −1.42 79.83
Cr −1.96 2.51 −1.81 75.55
As −0.06 2.50 −1.29 77.88
Sn −0.08 2.48 −1.31 77.41
Sb −0.07 2.49 −1.35− 77.66

our laboratory and experimental characteristics similar to those for Sn and Sb diffusion in α-Fe
are being observed. Nevertheless, As is a singular element as it stabilizes and extends the bcc
α-phase of Fe to higher temperatures even when present in small amounts [18]. This might
be related to the surprising migration behaviour obtained in the calculations, that has been
checked by changing the cell shape and the number of plane waves. The energies of a cell
with As in a substitutional position (beside a vacancy) and in the saddle point configuration
are the same, which indicates that it may also appear in the lattice as an interstitial. If this was
the case, Qp would no longer be the energy sum indicated in table 2 and a different calculation
should be performed to obtain it.

When the impurity is a magnetic one, the interactions with the neighbouring Fe atoms
depend on the magnetic moment of the impurity and different increments in the activation
energy are observed. For Co, the increase in the diffusion barrier is even higher than for
self-diffusion, given its strong interaction with the matrix, as we will see in the next section.
When the diffusing impurity is Cr, which aligns antiferromagnetically with the Fe matrix, no
large interaction is expected, so an αQp close to the non-magnetic diffuser is observed in the
present calculations and also in the experimental measurements (see table 1).

4.2. Magnetic moments

Table 3 reports the magnetic moments inside the muffin tins and in the interstitial region
obtained from our calculations. Co is the only impurity that increases the magnetic moment
of the whole cell, although its magnetic moment is smaller than that of Fe. This fact has
been known for a long time—it is even referred to in Kittel’s book [19]; but it is nevertheless
surprising. It is also surprising that the cell with a non-magnetic impurity or a vacancy has
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a larger total magnetic moment than 35 times the bulk Fe moment =78.8 µB. This can be
explained for the vacancy because when magnetic atoms are located on a surface their magnetic
moment increases with respect to the bulk material due to a narrowing of the local densities
of states—even more so if the surface atoms are different from the bulk ones and the epitaxy
forces them to be further apart than in the corresponding bulk. Increased magnetization also
appears close to voids and vacancies, as these again reduce the number of neighbours of the
magnetic atom. For this reason we show in table 3 the magnetic moments of Fe atoms that are
nearest neighbours to the vacancy.

The small magnetic moment of the non-magnetic impurities reported in table 1 is due to
hybridization; it is aligned antiferromagnetically with respect to Fe. This is similar to what
happens with the 4s and 4p electrons of Fe, those contributing most to the interstitial region of
the cell. They interact preferentially with the majority 3d band of iron because it is closer in
energy, and that induces a moment so small that is not seen in the spin density plots or in the
corresponding densities of states. The cases of Cr and Mn are of course quite different; they
are also aligned antiferromagnetically with respect to the host but the large magnetic moment
comes from their incomplete 3d bands.

4.3. Extrapolation to RKmax = ∞
As we pointed out in section 2, an exponential fit of the cell energy versus RKmax can be useful
for extrapolation. In this section we apply this idea to the calculations performed in supercells.
As

αQp = (EFERRO
for − EPARA

for ) + (EFERRO
mig − EPARA

mig ), (9)

using equation (8) and the definition of Emig, we obtain

αQp = [E34Fe+saddle + EFe − E35Fe+imp]FERRO − [′′]PARA (10)

where the first term in the bracket corresponds to the energy of a cell with an impurity at a saddle
point, the third term has a substitutional impurity and [′′]PARA represents the same bracket but
for the paramagnetic energies. This expression requires only four supercell calculations for
each RKmax.

In the particular case of self-diffusion (imp = Fe), as E35Fe+imp − EFe = 35EFe, only two
supercell calculations are required; these are plotted in figure 5. The limiting value of αQp is
obtained as

αQp = [35AFe − A(34Fe+saddle)]FERRO − [35AFe − A(35Fe+saddle)]PARA (11)

using the fitting parameters A for each case.
As can be appreciated in figure 6 (full curve), the extrapolated value of αQp is 0.5 eV, but

the estimated error coming from the procedure of fitting the A parameters is 0.3 eV. The value
measured directly by means of positron annihilation [16] is 0.4 ± 0.2 eV, and that obtained
via diffusion coefficient measurements is 0.41 ± 0.05 eV, as listed in table 1. Although the
numerical coincidence may be fortuitous, it is clear that small values of RKmax give too large
estimates for αQp.

We have also extrapolated E35Fe+vac, Efor and Emig for self-diffusion for both magnetic
and non-magnetic cases. These quantities have been measured separately, and there is a large
dispersion between results from different authors and different methods. Most recent positron
annihilation experiments [16] give Efor = 2.0±0.2 eV and 1.8±0.1 eV for the ferromagnetic
and paramagnetic cases respectively. Our numerical values, extrapolated for RKmax = ∞,
are 2.2 ± 0.3 and 1.6 ± 0.3 eV, almost within the experimental errors, although no lattice
relaxation has been performed. For Emig we obtain 0.5 ± 0.1 and 0.6 ± 0.1 eV respectively
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Figure 5. Calculated cohesive cell energy versus RKmax for a supercell with one Fe atom at a
saddle point.
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Figure 6. αQp versus RKmax for self-diffusion and Sb diffusion in α-Fe.

and the experiments give 0.55 [20] for the ferromagnetic case. The magnetic calculations can
be compared with those of other authors collected in table 4 of [3] and the agreement is very
good, even though no relaxation was performed in our case.

When we tried to introduce relaxation by displacing the Fe atom in the 〈111〉 direction
from its equilibrium position to the neighbour vacancy position, very different results were
obtained from spin-polarized and non-spin-polarized calculations. For the spin-polarized case
a normal 1% relaxation in the position, a vacancy formation energy increasing about 10% and
a plateau at the top of the barrier (instead of a double peak, as reported from some pair potential
calculations) were obtained. In contrast, for the non-spin-polarized case an unusually large
displacement from the equilibrium position (about 10%) was observed. This may be due to the
limitations in size and shape of our unit cell, combined with the fact that non-magnetic Fe is
not the stable state at 0 K. For this reason we discarded the possibility of including relaxation
in our calculations.

The same extrapolation procedure was applied as an example to the diffusion of Sb in Fe,
although with a smaller RKmax, which increases the error of the extrapolation. It gives for the
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cohesive energies A(35Fe+imp) = 228.781 ± 0.2 eV and A(34Fe+saddle) = 220.289 ± 0.3 eV
for spin-polarized calculations whereas for non-spin-polarized calculations the values are
A(35Fe+imp) = 210.498 ± 0.3 eV and A(34Fe+saddle) = 202.911 ± 0.2 eV. If the A values
are used in equation (9) instead of the energies for RKmax = 7.4, the value of αQp is reduced
to 0.35 eV. Although the error in this case is very large, the same trend as in self-diffusion
is observed (see figure 6, dashed curve). We conclude that the assumption often made in
the literature, that energy differences between calculations performed for the same RKmax are
almost independent of this value, is no longer valid when the quantities of interest are as small
as in the present work.

5. Conclusions

Ab initio calculations of the vacancy formation and migration energies in iron with different
impurities have been performed, and qualitative agreement with diffusion experiments over
an extended temperature range has been obtained. Calculations were done both in the
ferromagnetic and paramagnetic states, and although they are both at 0 K it is clear that
the spin alignment produces a lattice stiffening and diffusion is therefore more difficult. The
magnetic moments of iron atoms near the vacancies are increased appreciably. We have also
shown that better quantitative agreement with experimental results is achieved by using an
extrapolation to an infinite number of plane waves.

Different non-magnetic impurities have different activation energies, but the increase
due to magnetic ordering is approximately constant, which is not the case for the magnetic
impurities.
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